- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Weinreb, Robert N. (2)
-
Alaa, Ahmed (1)
-
Cheng, Huanyu (1)
-
Choi, Soo-Ho (1)
-
Edwards, Genea (1)
-
Ellisman, Mark H. (1)
-
Huang, Lingling (1)
-
Jindal, Basu (1)
-
Ju, Won-Kyu (1)
-
Kim, Jungsu (1)
-
Kim, Keun-Young (1)
-
Miller, Yury I. (1)
-
Perkins, Guy A. (1)
-
Phan, Sébastien (1)
-
Segal, Eran (1)
-
Skowronska-Krawczyk, Dorota (1)
-
Weinreb, Robert (1)
-
Wilson, David (1)
-
Xia, Yining (1)
-
Xie, Pengtao (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Semantic segmentation of medical images is pivotal in applications like disease diagnosis and treatment planning. While deep learning automates this task effectively, it struggles in ultra low-data regimes for the scarcity of annotated segmentation masks. To address this, we propose a generative deep learning framework that produces high-quality image-mask pairs as auxiliary training data. Unlike traditional generative models that separate data generation from model training, ours uses multi-level optimization for end-to-end data generation. This allows segmentation performance to guide the generation process, producing data tailored to improve segmentation outcomes. Our method demonstrates strong generalization across 11 medical image segmentation tasks and 19 datasets, covering various diseases, organs, and modalities. It improves performance by 10–20% (absolute) in both same- and out-of-domain settings and requires 8–20 times less training data than existing approaches. This greatly enhances the feasibility and cost-effectiveness of deep learning in data-limited medical imaging scenarios.more » « lessFree, publicly-accessible full text available July 14, 2026
-
Zhang, Wanqing; Huang, Lingling; Weinreb, Robert N.; Cheng, Huanyu (, Materials & Design)
-
Choi, Soo-Ho; Kim, Keun-Young; Perkins, Guy A.; Phan, Sébastien; Edwards, Genea; Xia, Yining; Kim, Jungsu; Skowronska-Krawczyk, Dorota; Weinreb, Robert N.; Ellisman, Mark H.; et al (, Redox Biology)null (Ed.)
An official website of the United States government
